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elationships between Caries Bacteria, Host Responses,
nd Clinical Signs and Symptoms of Pulpitis
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bstract
nowledge of caries bacteria and the inflammatory
esponses they elicit in the dental pulp is prerequisite to
ur understanding of the pathogenesis of pulpitis. Re-
ent advances in immunology and neurophysiology can
ow explain some of the clinical manifestations of
ulpitis. The purpose of this review is twofold. The first
urpose is to review the literature of the caries micro-
lora, the host immune responses they elicit, and how
hey do so. The relationship between both proinflam-
atory and anti-inflammatory cytokines and pulpitis is

iscussed. The proinflammatory properties of lipotei-
hoic acid, which is a common virulence factor among
ram-positive bacteria such as those found among the
aries bacteria, are reviewed. The second purpose is to
eview how bacteria and their metabolites, as well as
ulpal immune and inflammatory reactions to them,
odify the pain sensation in pulpitis. (J Endod 2007;33:

13–219)
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aries bacteria are the major cause of pulpal inflammation and infection. The out-
come of pulpal insult is a dynamic process that depends on both the invading

icroorganisms and host responses to them, which include inflammation and immu-
ity. Evidence from experimental pulpitis models has clearly demonstrated that bacte-
ial antigens and/or metabolic by-products can diffuse through dentinal tubules to elicit
mmune responses in the dental pulp (1–5). Immune complexes and by-products from
mmune responses, such as extracellular proteolytic enzymes released by phagocytosis,
an further aggravate pulpal inflammation (6, 7), making the problem worse. A case in
oint was a patient suffering from impaired cellular immunity (athymic dysplasia) with
gA deficiency in whom only a mild inflammatory response with little tissue destruction
as observed in a caries-exposed pulp (8). Thus an immunopathological mechanism of
ulpitis may be operational.

Pulpal pain is usually the first clinical sign of pathology if the insult is not removed
o resolve the edema from inflammation. Persistent inflammation in a low-compliance
nvironment such as the dental pulp elicits pain and eventually leads to total pulp
estruction (9, 10) and periapical pathosis (11). Inflammation is the outcome of
omplex interactions among various cell types. Because of the limited scope of this
eview, the roles of odontoblasts, fibroblasts, nerve fibers, mast cells, and endothelial
ells will be reviewed in a future paper. The goals of this review are: (1) to summarize
ur current knowledge of caries bacteria and their elicited host immune responses and
2) to discuss the correlation between caries bacteria, their role in pulpal immune
esponses and inflammation, and the symptoms of pulpitis.

Caries Pathogens and Caries Progression
The microflora in dental caries is highly complex and vary between individual

esions. The composition of the dominant groups may depend on diet, saliva, and the
hronicity of the lesion. Mutans group streptococci, such as Streptococcus mutans and
treptococcus sobrinus, and lactobacilli are important in the initiation and progres-
ion of caries (12–14). These microorganisms are acidogenic (produce acid) by
ermenting dietary carbohydrates, which results in the demineralization of enamel and
entin. They are also aciduric (acid tolerant), which gives them a competitive survival
dvantage. Among acidogenic bacteria, arginolytic strains of oral streptococci and
actobacilli (bacteria that can produce base from arginine and thus produce both a
ecline and increase in pH rather than a decline only) are considered less cariogenic.
heir ratio to that of nonarginolytic bacteria may determine the level of caries activity
15, 16). Furthermore, oral streptococci and lactobacilli are capable of intratubular
nvasion by binding to collagen type I in dentin (17, 18). After demineralization the
xposed collagen is further degraded by host-derived matrix metalloproteinases that
romote the advance of the caries (19).

As the lesion progresses deeper into the dentin, a transition from predominantly
acultative, Gram-positive bacteria in shallow caries to deep dentinal caries dominated
ith lactobacilli and/or anaerobic bacteria takes place (20 –22). This transition is
robably influenced by a change in the ecosystem (i.e., nutrients, O2 etc.). The avail-
bility of serum-like nutrients diffusing from the pulp into deep caries favors the growth
f proteolytic over saccharolytic bacteria (23, 24) as does blood hemin for Prevotella
pecies (25). Streptococci that require salivary glycoproteins and carbohydrates as an
nergy source are unlikely to thrive without saliva in a deep carious lesion.

We identified two types of deep carious lesions: those with high Lactobacillus and

hose with low Lactobacillus counts (26). In the low Lactobacillus lesions, a great
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ariation of the dominant microbes was noted and Gram-positive non-
actobacilli rods, Gram-positive cocci, or Prevotella intermedia were
ominant in certain samples. Results of recent molecular studies as-
essing the predominant flora in deep carious dentin support our find-
ngs (27, 28). Furthermore, Chhour et al. (29) used real-time polymer-
se chain reaction (PCR) to assess the total bacterial load of deep
arious lesions and categorized the lesions into high-Lactobacillus,
id-Lactobacillus/Prevotella, high-Prevotella, and low-Lactobacillus/

revotella lesions. However, neither Lactobacilli nor Prevotella were the
ominant isolates reported by Hoshino (21). They observed predomi-
antly anaerobic Gram-positive bacteria and Gram-negative rods in
eep dentinal caries, among which Pseudoramibacter alactolyticus
was Eubacterium alactolyticum) was the predominant isolate.

When caries invade pulpally, the pulpal inflammation manifests
tself by pain or hypersensitivity. In the following section, we will focus
n the bacterial metabolites that can be the modifiers of pain symptoms
ssociated with deep caries. The relationship between fermentation end
roducts of various bacteria in deep caries and clinical manifestations
o thermal tests is presented in Fig. 1.

Acid, Bacterial By-products, and Pain Modification
Bacterial metabolic by-products and cell wall components can diffuse

hrough dentinal tubules to elicit pulpal inflammation (2, 5, 30–32). Al-
hough we have not identified all of the molecules that come through the
entinal tubules, the main metabolites in caries have been examined.
actic acid is the predominant microbial by-product in active carious
entin (88%), which exhibits a low pH (mean 4.9) (33). Aciduric
acteria such as streptococci and lactobacilli produce more lactate
nder acidic conditions than at neutral pH (34, 35). In contrast, ar-
ested dentinal caries exhibits an acetate-dominant profile with a higher
H (mean 5.7) (33). Organic acid from bacterial fermentation of car-
ohydrates, including lactic, acetic, and propionic acids (1 mM to 1 M),
ot only fail to excite the intratubular A-� nerves but also reversibly
uppress nerve impulses elicited by other stimuli (36). These findings
ontradict the action of these acids in other tissues, which is to cause
evere pain. Two possible explanations have been proposed. First, the
ental pulp may lack the chemosensitive pain fibers found in other
issues (37, 38). Second, increased concentrations of H� ions (39, 40)
nd/or Ca�� ions (41) liberated from dentin decalcified by the acids
ay decrease the excitability of the dentinal nerve fibers. The direct

uppressive effect of acids on intratubular nerves could partially explain
hy carious teeth with high Lactobacillus counts usually are not sensi-

High Lactobacilli

High Prevotella High Streptococci

Low lactobacilli

Deep Caries Microflora

Cold/heat sensitiveNot sensitive to cold/heat

Organic
Acids

Indole,
Ammonia

Pro-inflammatory cytokines

IL-10 & Treg

Anti-inflammatory Super-antigens

Heat Sensitive

igure 1. The metabolites of deep caries bacteria and their contributions to
ulpal thermal sensitivity.
ive to thermal stimuli (42). This finding also may explain why a higher a
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eural density found beneath caries is not related to a worse pain ex-
erience (43).

Among the algogenic (pain producing) molecules produced by
acterial metabolism, ammonia is the most potent pain inducer, fol-

owed by urea and indole, which are by-products of amino acid fermen-
ation (44). Many anaerobic bacteria are asaccharolytic (i.e., do not
ain energy from conversion of sugars to acidic fermentation products)
ut are proteolytic, their growth depending on their ability to metabolize
roteins or peptides. Asaccharolytic bacteria such as Fusobacterium
ucleatum, Prevotella intermedia, and Porphyromonas gingivalis
an incorporate and ferment amino acids such as glutamic and aspartic
cids into organic acids and ammonia (45, 46). Bacteria associated
ith deep caries and infected canals, such as Porphyromonas spp, P.

ntermedia, F. nucleatum, Propionobacterium acnes, and a few iso-
ates of Actinomyces, Peptostreptococci, Bacteroides, and Eubacteria
re indole-positive (a test used for bacterial taxonomy that determines
he ability of the bacterium to split indole from the amino acid trypto-
han) (47). Many studies have demonstrated a close association be-

ween pain and the recovery of Prevotella, Porphyromonas, and Fuso-
acterium from caries (26, 48) and infected canals (49, 50). The
lgogenic metabolites from anaerobic Gram-negative bacteria in deep
aries could partially explain why Bacteroides spp, P. intermedia, and
he amount of lipopolysaccharide (LPS) in caries are positively related
o heat sensitivity or pain (42, 51). LPS activates the Hageman factor,
eading to bradykinin production, a potent pain inducer (52, 53).

ipoteichoic Acid
LTA is an amphiphilic molecule consisting of a polyglycerolphos-

hate with a complex glycolipid group attached (54, 55). It is anchored
y hydrophobic forces to the cell membranes of Gram-positive bacteria,

ncluding most streptococcal strains (56). LTA is produced in large
uantities by cariogenic bacteria when sucrose is available (57) and can
e exported extracellularly when bacteria are grown at low pH (58).
TA released extracellularly by Gram-positive, acidogenic bacteria
ould diffuse pulpally and elicit immune responses.

LPS and LTA activate the innate immune system by similar mech-
nisms. Both LPS and LTA bind to CD14, activate signaling by Toll-like
eceptors (TLRs) (59, 60), and induce proinflammatory cytokines such
s tumor necrosis factor-alpha (TNF-�), interleukin-1 (IL-1), inter-
ukin-8 (IL-8), interleukin-12 (IL-12), and anti-inflammatory cytokine
nterleukin-10 (IL-10) (61, 62). A recent study demonstrated that Ba-
illus subtilis LTA stimulates odontoblasts by TLR2 and induces the
ecretion of chemokines (CCL2 and CXCL2). CCL2 attracts immature
endritic cells (DCs) and CXCL2 is angiogenic (63). Lactobacillus LTA

nduces TNF-� production by TLR2 (64). Furthermore, LTA from S.
utans induced apoptosis of cultured pulp cells (mainly fibroblasts) in

itro, which could contribute to the initiation of and/or progression of
ulpitis (65). A recent study demonstrated that TGF-� (transforming
rowth factor) gene expression was down-regulated when odontoblasts
ere challenged with LTA, which promotes immune defense rather than
ineralization (63). A summary of the proinflammatory and anti-

nflammatory effects of LTA is illustrated in Fig. 2.
Although LTA is much less potent than LPS in inducing proinflam-

atory cytokine production by macrophages (62), it exhibits a similar
otency in the induction of macrophage vascular endothelial cell
rowth factor (VEGF) expression (66, 67). VEGF can also be produced
y LTA-stimulated odontoblast-like cells and pulpal cells (67). VEGF is
potent inducer of angiogenesis and vascular permeability (68, 69).
he ability of VEGF to enhance vascular permeability is estimated to be
0,000 times higher than that of histamine (70). Furthermore, VEGF is
xpressed in dentin matrix and the rate of its release from the matrix

fter injury closely relates to the healing capability of the pulpal tissue
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71). A rapid increase in VEGF expression may result in an acute in-
rease in interstitial tissue pressure in the noncompliant pulp space,
eading to pulpal necrosis.

LTA also exhibits anti-inflammatory effects including anti-phago-
ytosis and direct binding to interleukin-2 (IL-2) (72, 73). LTA from
emolytic streptococci inhibits the uptake of streptococci by epithelial
ells. LTA binding to IL-2 inhibits the function and measurability of IL-2
73, 74). An increase of IL-2 titer in irreversible pulpitis was observed
y Rauschenberger et al. (75) but not by Anderson et al. (76). This
iscrepancy could be the result of different amounts of LTA in their
amples, which was not measured. Because IL-2 performs many func-
ions critical to the successful elimination of pathogens, LTA release
ould significantly dampen the immune responses in general. Thus, LTA
ay not only provide a selective advantage to Gram-positive bacteria but

lso interfere with ongoing responses to other infectious agents.

ro-inflammatory Cytokine Induction by Caries Bacteria
Bacterial antigens induce proinflammatory cytokines including IL-

2, IL-1, TNF-�, and interferon-gamma (IFN-�) (61, 77–79). IL-12 is
ainly secreted by DCs and monocytes/macrophages. Its chief biologic

unction is to stimulate IFN-� production by activated T cells and natural
iller (NK) cells. IFN-� in turn activates macrophages to kill phagocy-

osed microbes. IL-1 and TNF-� are rapidly produced by activated
onocytes/macrophages to recruit neutrophils and monocytes to the

ite of infection. In general, Gram-positive and Gram-negative bacteria
re comparable in their IL-1 induction but Gram-positive are more
otent IL-12 and TNF-� inducers than Gram-negative bacteria (78, 79).

IL-6 is secreted by various cell types in response to microbes or
ytokines such as IL-1 and TNF-� (80 – 83). IL-6 stimulates hepatocytes
o synthesize two major acute-phase proteins: C-reactive protein (CRP),
hich increases the rate of bacterial phagocytosis, and serum amyloid A
SAA), which influences cell adhesion, migration, proliferation, and
ggregation. These proteins also produce a systemic reaction that in-
ludes fever, increased erythrocyte sedimentation rate, increased secre-
ion of glucocorticoids, activation of the complement, and clotting cas-
ades (84, 85). IL-6 also stimulates the production of neutrophils from
one marrow in innate immunity (86, 87). IL-6 is involved in adaptive
mmunity by inducing the permanent differentiation of B-cells into
lasma cells that produce antibodies and is therefore considered to be
type-2 cytokine (one that stimulates antibody production) by some

LTAPro-inflammatory Anti-inflammatory

OD

Mocytokines

VEGF

CCL2

CXCL2

TLR2,3,5,9

Angiogenic

Fibroblast apoptosis

Binds IL-2

Anti-phagocytosis

CXCL10

OD

Angiostatic

IL-10

iDC

TGF-b

igure 2. The pro-inflammatory and anti-inflammatory properties of LTA. Neg-
tive regulation is expressed by a dashed line (- - - - -). Abbreviations: iDC,
mmature dendritic cells; Mo, monocytes; OD, odontoblasts; VEGF, vascular
ndothelial cell growth factor.
esearchers (88). IL-6, along with IL-1�, is secreted when pulpal cells b

OE — Volume 33, Number 3, March 2007
re challenged with peptidoglycan preparations of Gram-positive bac-
eria (89, 90). Thus, IL-6 may be important in the later stage of pulpitis
hen the number of B cells increases.

Gram-positive cell walls stimulate the synthesis of TNF-� and IL-6
y human monocytes (91). Peptidoglycan is the major cell wall com-
onent of Gram-positive bacteria and a thin layer is also present in
ram-negative bacteria. It has been increasingly recognized as a potent
roinflammatory molecule that plays an important role in rheumatoid
rthritis and other autoimmune diseases (92–95). Because peptidogly-
an is released upon lysis of the cell, its role in the progression of
ulpitis needs further investigation.

The LPS of Gram-negative bacterial cells induces potent pro-
nflammatory cytokines (96). Various preparations of Gram-negative
acteria induce dental pulp cells to secrete IL-6, IL-1�, and IL-8 (which
ecruits neutrophils to the site of inflammation, and thus is also known
s the Neutrophil Chemotactic Factor) (81, 97–101). Although pulpal
ibroblasts can produce pro-inflammatory cytokines and chemokines in
itro, the majority of IL-1 or IL-8 positive cells in inflamed pulps are
mmune cells and endothelial cells not associated with fibroblasts
102–104). The suppression of cytokine expression in vivo may arise
rom immunomodulation by other cytokines (105).

S. mutans induces peripheral blood mononuclear cells to pro-
uce high titers of proinflammatory cytokines including IFN-�, IL-12
77), TNF-� (106), and chemokines including IL-8 and MCP-1 (107).
ell wall molecules of S. mutans, such as proteins of the I/II family and

he serotype f antigen (a polysaccharide rhamnose-glucose polysaccha-
ide covalently bound to bacterial cell wall peptidoglycans that facili-
ates the adherence of S. mutans to hard surfaces) are responsible for
he induction of these inflammatory cytokines (108). Cell-free super-
atant fluids of viridans Streptococci induce IL-1, IL-6, IL-8, and TNF-�
109, 110). Extracellular products of Streptococcus mitis and S. san-
uinis also induce proinflammatory cytokines (109, 111). The inflam-
atory mediators induced by these proinflammatory cytokines sensitize
fibers in the dental pulp (112–116). These findings may partially

xplain why some deep caries loaded with oral streptococci exhibit
rolonged pain to heat testing (42).

Other bacterial components such as cell surface polysaccharides,
eat shock proteins, and extracellular products (such as proteases and
xotoxins) also induce pro-inflammatory cytokines (117). Superanti-
ens, which are potent cytokine inducers that do not require antigen
resentation, have been associated with certain strains of Streptococ-
us mitis, P. intermedia, and periodontal pathogens (109, 118 –120).
roinflammatory cytokines play a crucial role in tissue destruction and

he pathogenesis of many diseases (121–124). Anti-inflammatory cyto-
ine treatment has proved beneficial in arthritis, inflammatory bowel
isease, and periodontal disease (125–128). Similarly, proinflamma-

ory cytokine induction by caries bacteria is an important virulence
actor in pulpitis. Patients with compromised proinflammatory cytokine
esponses may react to caries invasion with little inflammation, whereas
evere inflammation and pulpal tissue destruction may result in patients
ith a hyper-response of proinflammatory cytokines to bacterial chal-

enge. Local application of anti-inflammatory cytokine reagents can
herefore be therapeutic in early pulpitis by reducing tissue destruction
s well as pain.

nti-inflammatory Cytokine (IL-10) Induction by
aries Bacteria

Lactobacilli are the dominant flora in certain deep carious lesions
nd are negatively associated with thermal sensitivity (26). Clinically, we
ometimes encounter teeth with vital pulps and deep caries but no
bvious thermal sensitivity. This clinical finding may be explained partly

y the direct suppressive effect of the organic acids produced by these
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acteria and partly by their induction of anti-inflammatory cytokine
L-10 and regulatory T cells (Treg) (129 –131). L. casei, one of the
actobacillus species most frequently recovered from deep caries, in-
uced a significantly higher IL-10 titer than that of other caries bacteria
t a low concentration (105 per mL) (132). Certain Lactobacilli such as
. casei and L. paracasei bind to DC-specific intercellular adhesion
olecule 3-grabbing non-integrin (DC-SIGN) on immature DCs and

nduce Treg and IL-10 production (129 –131). Furthermore, Lactoba-
illi appear to generate tolerogenic DCs, a phenotype characterized by
ncreased co-stimulatory marker expression but low production of pro-
nflammatory cytokines (133). Such tolerogenic DCs may contribute to
he production of Treg in vivo (134, 135). This immune suppressive
ffect of L. casei helps explain the significantly reduced IFN-� titer that
e observed when peripheral blood mononuclear cells were chal-

enged with S. mutans and L. casei together (unpublished data). P.
lactolyticus, another representative isolate from caries, exhibits a
trong type-2 cytokine profile, inducing more IL-10 than IFN-�. The
L-10 induced by these bacteria and Treg can contribute to the signifi-
ant elevation of IL-10 mRNA in pulps beneath deep caries (77).

Other Virulence Factors of Caries Pathogens
Gram-positive caries bacteria are capable of activating comple-

ent pathways. Based on experimental pulpitis studies, C3a and C5a
enerated from complement activation were thought to be important
irulence factors of cariogenic bacteria that elicit neutrophil accumu-
ation in the Arthus reaction (2, 3, 5, 30). Recent studies, however,
howed that the presence of an intact complement cascade is neither
ecessary nor sufficient to trigger or propagate the Arthus reaction
136, 137). Thus, tissue damage from direct complement activation by
ram-positive bacteria in shallow caries may be minimal.

S. mutans and L. casei are cytotoxic and are capable of causing
otal pulpal necrosis of rat teeth (138, 139). S. sanguinis and Entero-

igure 3. LTA reduces fluid flow. Human dentinal disks (2.6 –1.3 mm in thick
ccording to the method described previously (157). Each dot represents one

ate of 23 blocks were plotted over time. There was a significant decrease of flow rat

16 Hahn and Liewehr
occus faecalis were the most cytotoxic isolates of the commonly
solated endodontic pathogens to fibroblasts and macrophages
140, 141). The molecular mechanism of the cytotoxicity of S. sangui-
is is not yet understood. Thorough reviews of the virulence factors of
. faecalis are available (142, 143). Virulence factors of other Gram-
egative bacteria associated with infected canals are reviewed by Baum-
artner (144).

emaining Dentin Thickness and Tubular Permeability
Remaining dentin thickness and tubular permeability are the most

mportant determining factors of the pulpal inflammatory response
145–147). Although bacteria or their cell-wall components such as
PS are capable of passing through tubules to induce inflammatory
esponses in the dental pulp (2, 4, 5, 30), the thickness of dentin can
reatly reduce the concentration of bacterial proteins and the amount of
PS that reaches the pulp (31, 148, 149). We infiltrated commercial LTA
reparations from S. mutans through dentinal blocks using fluid filtra-

ion and observed that the dentin permeability decreased with time (Fig.
), probably as a result of LTA binding to the dentinal walls (150). An

ncrease of inflammatory cells in pulps of teeth with pulpitis was ob-
erved only when the caries front was �1.5 mm from the pulp (151,
52). McLachlan et al. (153) observed less expression of PMN-associ-
ted S100 family genes (which code for S-100 proteins, calcium-bind-
ng proteins, some of which have been shown to have intracellular and
xtracellular functions associated with inflammation) in inflamed pulps
hen the remaining dentin thickness was �2 mm. It appears that 2 mm
f sound dentin provides a safeguard for a speedy recovery of the dental
ulp to health.

Future Directions
Caries are composed of complex and dynamic flora, all of which

he dental pulp is exposed to at one time or another. Studies of individ-

were infiltrated with LTA from S. mutans (50 �g/ml, Sigma) for 180 minutes
oint of one sample block at the specific time point. Percentage changes of flow
ness)
data p
e with time.
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al cultivable caries bacteria and their cell wall components have been
ndertaken to better understand the pathogenesis of pulpitis. Unfortu-
ately, roughly 50% of caries bacteria are not cultivable (154), and we
ave not yet identified the molecules in shallow caries that diffuse
hrough the dentinal tubules. Molecular approaches to characterize
hese chemicals are much needed. Analysis of a large sample population
f carious dentin and the infecting microbes using a high-throughput
ene expression technique such as microarrays would provide a more
omprehensive understanding of the multitude of genes of importance
n caries. Therefore, conclusions drawn from current studies may need
o be modified or abandoned as more data are collected through future
esearch.

Caries bacteria elicit various concentrations of both proinflamma-
ory and anti-inflammatory cytokines. These bacteria have usually been
rown and studied in a planktonic state. Gene and protein expressions,
owever, are clearly different when comparing bacteria grown in the
lanktonic state to those in a biofilm community (155–157). Bacteria
rown in a biofilm environment, closely simulating the in vivo carious
esion, would provide valuable information about virulence factors in-
olved in the caries invasion. Furthermore, dynamics of the polymicro-
ial caries infection and its evolution over time have not been addressed
ith these in vitro studies. Thus, a more realistic in vivo and/or in vitro
aries model is needed to critically examine the virulence factors of
aries bacteria.
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